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Scaling laws in two-dimensional turbulent convection
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Two-dimensional homogeneous turbulent convection is studied numerically. Though Bolgiano-Obukhov
scaling is approximately valid, strong differences exist in the intermittency properties of velocity and tempera-
ture increments, where the latter are similar to those of a passive scalar. The main difference of the small-scale
dynamics compared to a passive scalar arises from the Kelvin-Helmholtz instability, but this process does not
affect the scaling properties. A condition for a scalar field to show the ramp-and-cliff structures of a passive
scalar is discussed.
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Two-dimensional~2D! homogeneous turbulence has r
ceived considerable attention in recent years, notably in
hydrodynamics, e.g.,@1,2#, 2D magnetohydrodynamic
~MHD!, e.g., @3#, and 2D electron magnetohydrodynami
~EMHD!, e.g.,@4#. Most of the interest in such systems d
rives from their value as paradigms in turbulence theo
which are more easily accessible to analytical and, more
portantly, numerical studies than fully three-dimensional t
bulence. The kinship of a two-dimensional system to
three-dimensional counterpart is strongly model depend
While hydrodynamic turbulence differs fundamentally
two and three dimensions, 2D and 3D MHD and EMH
turbulence have very similar cascade and scaling proper
A further important turbulent system, which has been stud
in 2D, is buoyancy-driven convection. Here interest is p
marily focused on Rayleigh-Be´nard convection in a fluid
layer confined between two horizontal plates heated fr
below and cooled from above. In this system, however,
bulence is far from homogeneous, being dominated
boundary layer effects, e.g.,@5,6#. By contrast, homogeneou
convective turbulence in an open system, which we trea
this Rapid Communication, has not yet been studied
tensely in the literature.

The 2D equations of thermal convection in the Bou
inesq approximation can be written in terms of two fun
tions, the vorticityv5¹2f, wheref is the stream function
v5ez3“f, and the temperature fluctuationu5T2T0,

] tv1v•“v1]yu5 n̂¹2v, ~1!

] tu1v•“u5k̂¹2u1 f , ~2!

where the third term on the left in Eq.~1! is the buoyancy
effect, andf is the injection rate to be specified below. Th
equations are given in non-dimensional form using the n
malizationsvt0 /L0→v and u/T08L0→u, whereL05T0 /T08
is the temperature scale length,t05(agT08)

21/2 the time
scale of the buoyant motion,a the thermal expansion coe
ficient, g the gravitational acceleration acting in2x direc-
tion, in the same direction as the mean temperature grad
We consider a quadratic box of linear sizeL52pL0. The
diffusion coefficients can be expressed in terms of the R
leigh number Ra5agT08L

4/nk and the Prandtl number P
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5n/k, n̂5(2p)2(Pr/Ra)1/2, k̂5(2p)2/(Pr Ra)1/2. We
choose this normalization to the dynamic time scalet0 in-
stead of the more conventional one to the diffusion time,
order to underline the formal relationship of Eqs.~1! and~2!
to other 2D turbulent systems such as MHD. It should
noted that our model is rather closely related to a physic
realizable sytem: thermal convection in a magnetiz
plasma, which is essentially two-dimensional. The shea
the embedding magnetic field determines the size of the l
est eddies excited, which can be much smaller than the
erage gradient scale justifying the Boussinesq approxima
and the choice of periodic boundary conditions.

Two-dimensional convection is also interesting in t
context of passive scalar turbulence, which has becom
vividly discussed topic in turbulence theory since the se
nal paper by Kraichnan@7#, see, e.g., Refs.@8–11#, such that
the statistics of a passive scalar fieldu seems to be rathe
well understood. It derives mainly from the spatial distrib
tion of the field characterized by a ramp-and-cliff structu
resulting from the lagrangian distortion by the sheared vel
ity. Both perturbation theory~e.g., Ref.@10#! and numerical
simulations~e.g., Ref.@11#! indicate that the scaling expo
nents zp of the structure functionsSu

(p)5^du l
p&; l zp, du l

5u(x)2u(x2 l), are strongly anomalous, in particular sat
rate asymptotically,zp→const forp→`.

Whether temperature fluctuations in thermal convect
behave as an active scalar or react only passively depend
the strength of the buoyancy term. This term is importan
scales l .LBO, where LBO5em

5/4/@eu
3/4(ga)3/2# is the

Bolgiano-Obukhov length, see Ref.@12#, andem andeu are
the dissipation rates of kinetic energy and entropy (u2 can be
considered as the entropy density of the system@13#!. For l
,LBO the buoyancy effect is neglibile and the temperatu
becomes a passive scalar. In Rayleigh-Be´rnard convection
both regimes are possible; e.g., Ref.@14#. In homogeneous
turbulent convection, however,LBO is always smaller than
the inertial scales, sinceem decreases rapidly withm, hence
u in Eq. ~2! is always an active scalar.

The scaling properties of the scalar field depend on th
of the velocity. In thermal convection both are determin
selfconsistently depending only weakly on the injection p
cess f @15#, ^dv ldu l

2&52 4
3 eul , where dv l5@v(x)2v(x

2 l)#• l/ l , and the balance between advection and buoya
©2001 The American Physical Society02-1
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terms in the momentum equation~1!, dv l
2/ l;du l , one ob-

tains immediately the Bolgiano-Obukhov~BO! scaling
@16,17#1 dv l; l 3/5, du l; l 1/5.

We solve Eqs.~1! and ~2! numerically with periodic
boundary conditions using a standard dealiased pseudos
tral method with 40962 collocation points. The main param
eters of the simulation runs are given in Table I.~The value
of Ra is included more for curiosity, since in the case
periodic boundary conditions the physics differs from
Rayleigh-Bénard system with viscous boundary layers.! The
simulations are followed for 10–15 large-eddy turnov
times, which is sufficient to yield good time averages.
coherent drivingf is chosen corresponding to a fixed bac
ground temperature gradient,f 5vx52]yf.2 Because of the
inverse cascade of the velocity a large-scale damping is
quired ~similar to simulations of the inverse energy casca
in 2D Navier-Stokes turbulence!. Hence, the dissipative
terms in Eqs.~1! and ~2! are replaced~in k-space! by
2(ak22m1 n̂nk2n)vk and 2(ak22m1k̂nk2n)uk , respec-
tively, wherea5O(1), and wechoosem51 or 3 andn
51 or 2. For values ofn or m larger than one, dissipation i
concentrated more strongly at the high- or low-k spectral
edge thus broadening the inertial range, but some care h
be taken because of the tendency to generate ‘‘bottlene
humps@18# as discussed below.

Equation~1! indicates thatv is amplified at the cliffs ofu
thus forming vorticity sheets~instead of vorticity gradient
sheets in 2D Navier-Stokes!. These sheets suffer Kelvin
Helmholtz instablility, which controls the small-scale stru
ture of theu cliffs in the turbulence as illustrated in Fig. 1
~The time development of the instability is faster than t
dynamic distortions of the flow, such that the concept of
instability applies.! The Kelvin-Helmholtz process const
tutes the main difference in the spatial behavior compa
with a passive scalar shown, e.g., in Ref.@11#.

The primary objective of this letter are the scaling exp
nents of the structure functions, which provide a rather co
plete picture of the statistical properties of the turbulen
~This approach has become customary in homogeneous
bulence theory, though it should be mentioned that the ph
cal interpretation of the the set of scaling exponents is d

1Bolgiano and Obukhov derived this result assuming a sta
stratified system. Its validity in the case of unstable stratificat
was discussed by L’vov@13#.

2This driving generates a slight anisotropy ofu in the x direction
as discussed in Ref.@11#, in addition to a similar anisotropy of the
velocity field due to the buoyancy term. However, both effects
not essential for the scaling of the structure functions given bel

TABLE I. Main parameters of the simulation runs.

Run No. N2 n m n̂n (5k̂n) Ra

1 40962 1 3 331025 1.731012

2 40962 2 3 2310210

3 40962 2 1 7310211
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cult, to say the least. For instance, it is not clear how to re
them to the typical spatial structures of the turbulence fie!
We study, in particular, Sv

(p)5^udv l up&; l jp, Svuu
(p)

5^udv ldu l
2up/3&; l zp, which is related to the entropy fluxvu2

@13#, andSu
(p); l zp. Accurate values of the scaling exponen

can be obtained, even for only a short scaling range, if
fields satisfy the property of extended self-similarity~ESS!
@19# and an exact relation exists to gauge the exponents
Navier-Stokes turbulence use of ESS and Kolmogorov’s 4
law for Sv

(3) allow to determinejp with an uncertainty of less
than 1%. In the case of thermal convection no such ex
relation exists, neither forSu

(p) nor for Sv
(p) , hence the ESS

property, if satisfied, determines only the relative expone
There is, however, Yaglom’s 4/3-law mentioned above.

Fig. 2 the expression2^dv ldu l
2&/( 4

3 eul ), averaged overx

ly
n

e
.

FIG. 1. Evolution of the Kelvin-Helmholtz instability in turbu
lent convection. Temperature~left column! and vorticity~right col-
umn! at t51.5 ~a!,~b! and t53 ~c!,~d!.

FIG. 2. Yaglom’s law2^dv ldu l
2&/( 4

3 eul ) for run 1 ~continuous
line!, run 2 ~dash-dotted line! and run 3~dotted line!.
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andy, is plotted for the simulation runs in Table I. As can

seen, the scaling is valid over a range of 11
2 decades and the

numerical value is only slightly larger than unity.
We start by considering the velocity structure functio

Sv
(p) . Plotted as functions ofSv

(3) , theSv
(p) show perfect scal-

ings over the entire range of the argument validating the E
property. The relative exponentsjp /j3 are almost identica
in x andy direction and for all runs~with a scatter of 1–3 %!.
The values show that the velocity fluctuations are o
weakly intermittent, the asymptotic increase ofjp at largep
being only slightly slower than at smallp. A phenomenologi-
cal model can be obtained in the framework of the lo
Poisson scheme@20,21#. In Ref.@20# a general expression fo
the relative scaling exponentsjp /j3 is written in terms of
two parameters,b, a measure of the efficiency of energ
transfer from scale to scale (b51 in the nonintermittent
limit !, andD, which is related to the codimensionC0 of the
most intermittent scales,D5C0(12b). ChoosingD5 1

5 and
12b5 3

5 , which are reminiscent of the BO scaling exp
nents ofdu l anddv l , this expression becomes

jp /j3umod5
4

15
p1

1

3 F12S 2

5D p/3G . ~3!

As seen in Table II, these values fit the simulation res
well, too well it seems, in fact, to be fortuitous, though w
are unable to give a simple geometric interpretation. T
codimension isC05 1

3 , much smaller than in 3D Navier
Stokes turbulence, hence the smallest structures are al
space-filling as can be seen in Fig. 1~d!.

In contrast to the relative~ESS! exponents, the absolut
values, in particularj3, are less well determined. Form
53, which should yield a particularly broad inertial range
bottleneck hump appears at large scales caused by th
verse cascade of the kinetic energy in the presence of a ra
abrupt transition from the inertial range to the low-k dissipa-
tive. Only for m51 is this transition sufficiently gradual t
avoid energy accumulation in front of the dissipation regio
but this implies, of course, a shorter inertial range. From
3 we obtainj3.1.84, in approximate agreement with th
~nonintermittent! BO valuej351.8.

Also the mixed structure functionsSvuu
(p) satisfiy the ESS

property.~It has been argued@23# that ESS is valid for mo-

TABLE II. Scaling exponentszp and relative scaling exponent
jp /j3 andzp /z3, averaged over the three runs in Table I. The th
column gives the valuesjp /j3umod of model ~3!, the fifth column
the She-Leveque exponentszp,SL for hydrodynamic turbulence
Only even ordersp are included.

p jp /j3 jp /j3umod zp /z3 zp,SL zp

2 0.68 0.69 0.71 0.70 0.39
4 1.31 1.30 1.26 1.28 0.57
6 1.92 1.88 1.73 1.78 0.66
8 2.49 2.44 2.16 2.21 0.72

10 3.05 2.98 2.57 2.59 0.76
12 3.58 3.52 2.96 2.94 0.79
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ments corresponding to a convective energy flux such asvv2

and vu2, but not for more general quantities such asu3.!
Accurate values of the relative scaling exponentszp /z3 are
obtained, which should be equal tozp usingSvuu

(3) ; l . As seen
in Table II, the values are close to the She-Leveque ex
nentsjp,SL @24# in hydrodynamic turbulence. It is, howeve
difficult to decide whether this agreement is significant
purely accidental, since there is no obvious reason why
statistics of the entropy flux in 2D should be more close
related to that of the kinetic energy flux in 3D than in 2D, t
latter being very different as shown above. Not only the E
functions Svuu

(p) (Svuu
(3) ) but also the functionsSvuu

(p) ( l ) them-
selves show rather good scaling properties at lower ord
even without taking the absolute value in the moments; s
for instance, Fig. 2.

The temperature structure functionsSu
(p) do not exhibit

ESS property, neither when plotted as functions ofSu
(3) nor

as functions ofSvuu
(3) , a behavior also found in experimen

@23#. However the scaling quality of theSu
(p) themselves is

good enough up to rather high ordersp;10 to yield accurate
values of the exponentszp , which are given in Table II. The
Su

(p) do not show a bottleneck effect, neither at large sca
because the entropy cascade is direct, nor at small scales
logarithmic derivative of the structure functions remaini
monotonic.~By contrast, the entropyspectrumuk

2 exhibits a
strong bottleneck effect@22#, even for normal diffusionn
51.! The scaling range ofSu

(p) is broadest in run 2. Figure 3
gives the logarithmic derivatives ofSu

(p) for p51 –12. It
should be mentioned that the instantaneous scaling e
nents vary strongly in time as also found in 3D simulatio
of passive scalar turbulence@25#, only the average over a
sufficiently long period gives stationary values.

A comparison with the scaling exponents for a 2D pass
scalar in @11# gives the interesting result that therelative
scaling exponentszp /z2 agree with those of the passive sc
lar within error bars, as shown in the inset of Fig. 3. Th
behavior suggests that the scaling properties of a scala

FIG. 3. d log Su
(p)/d log l for p51 –12 ~from below! for run 2.

The dots in the inset are the relative exponentszp /z2 obtained from
Table II, where the error bars are obtained from Fig. 5 of Ref.@10#
for a passive scalar.
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not depend on the details of the velocity field, but are de
mined by some average properties, in our case the en
spectrumvk

2 . ~It is, however, not clear whether the relativ
exponents are universal. Perturbation theory@10# indicates
that the passive scalar exponents depend on the velocity
relation time, which is related to the energy spectrum. In a
case, for a 3D scalar field the relative exponents dif
clearly from the 2D result, being less intermittent@23#. A
similar tendency is found when comparing 2D and 3D MH
turbulence@26#.! Figure 3 is consistent with a saturation
zp . Also the probability density functions ofdu l exhibit the
same character as for a passive scalar, a cusp resulting
the ramp-and-cliff structure and a Gaussian at large value
the argument@8#.

Finally, we briefly discuss the conditions for an acti
scalar to resemble a passive scalar, in particular exhibit
ramp-and-cliff spatial structure. This property depends
the character of the coupling. In the case of 2D MHD,
instance, the magnetic potentialc, which follows an equa-
tion of the form~2!, is coupled to the velocity by the non
linear Lorentz force involving the current density¹2c. Here
the scalar field does not show a ramp-and-cliff behavior
2D EMHD, where the coupling is again the Lorentz forc
e

tt

tt

s
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the electron canonical momentumF5c2de
2¹2c follows

Eq. ~2!. F has the ramp-and-cliff character at scalesl ,de ,
whereF.2de

2¹2c, but not at larger scalesl .de , where
F.c. Comparing this behavior with that of the temperatu
in Boussinesq convection, where the coupling occ
through the linear buoyancy term, it appears to be the
sence of a higher-order derivative of the scalar field in
coupling term, not the linearity of the coupling, which give
rise to the cliffs and ramps.

In conclusion, we have studied 2D homogeneous Bou
inesq turbulence. Though Bolgiano-Obukhov scaling is
proximately valid, strong differences exist in the interm
tency of velocity and temperature increments. While for t
former intermittency is weaker than in 3D hydrodynam
turbulence, it is much stronger for the latter, similar to that
a passive scalar@11#. The main difference in the small-sca
dynamics from a passive scalar arises through the Kel
Helmholtz instability of the vorticity sheets, but this does n
seem to affect the scaling properties. In general, an ac
scalar shows the ramp-and-cliff structures characteristic
passive scalar, when the coupling term in the velocity eq
tion does not contain derivatives of the scalar.
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