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Scaling laws in two-dimensional turbulent convection
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Two-dimensional homogeneous turbulent convection is studied numerically. Though Bolgiano-Obukhov
scaling is approximately valid, strong differences exist in the intermittency properties of velocity and tempera-
ture increments, where the latter are similar to those of a passive scalar. The main difference of the small-scale
dynamics compared to a passive scalar arises from the Kelvin-Helmholtz instability, but this process does not
affect the scaling properties. A condition for a scalar field to show the ramp-and-cliff structures of a passive
scalar is discussed.
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Two-dimensional(2D) homogeneous turbulence has re- =/, 3=(2m)%(Pr/Ra}? k=(2m)%(PrRa}2 We

hydrodynamics, e.g.,[1,2], 2D magnetohydrodynamics gtead of the more conventional one to the diffusion time, in

(MHD), e.g.,[3], and 2D electron magnetohydrodynamics g qer to underline the formal relationship of E¢®) and (2)
(EMHD), e.g.,[4]. Most of the interest in such systems de- to other 2D turbulent systems such as MHD. It should be

rves from their valpe as pafad'gms in tgrbulence theo.rynoted that our model is rather closely related to a physically
which are more easily accessible to analytical and, more im-

) . . . realizable sytem: thermal convection in a magnetized
portantly, numerical studies than fully three-dimensional tur- lasma. which is essentiallv two-dimensional. The shear of
bulence. The kinship of a two-dimensional system to itsP ' y '

three-dimensional counterpart is strongly model dependenjihe embedding magnetic field determines the size of the larg-

While hydrodynamic turbulence differs fundamentally in €St €ddies excited, which can be much smaller than the av-
two and three dimensions, 2D and 3D MHD and EMHD ©rage gradient scale justifying the Boussinesq approximation
turbulence have very similar cascade and scaling propertie@"d the choice of periodic boundary conditions.
A further important turbulent system, which has been studied TWo-dimensional convection is also interesting in the
in 2D, is buoyancy-driven convection. Here interest is pri-context of passive scalar turbulence, which has become a
marily focused on Rayleigh-Berd convection in a fluid vividly discussed topic in turbulence theory since the semi-
layer confined between two horizontal plates heated fronfl@l paper by Kraichnafv], see, e.g., Ref$8-11], such that
below and cooled from above. In this system, however, turthe statistics of a passive scalar fisddseems to be rather
bulence is far from homogeneous, being dominated byvell understood. It derives mainly from the spatial distribu-
boundary layer effects, e.45,6]. By contrast, homogeneous tion of the field characterized by a ramp-and-cliff structure,
convective turbulence in an open system, which we treat ifiesulting from the lagrangian distortion by the sheared veloc-
this Rapid Communication, has not yet been studied inity. Both perturbation theorye.g., Ref[10]) and numerical
tensely in the literature. simulations(e.g., Ref.[11]) indicate that the scaling expo-
The 2D equations of thermal convection in the Bouss-nents Z, of the structure fUﬂCti0n§%p)=(_50|p>~|_5p, 56,
inesq approximation can be written in terms of two func-= 6(x) — 6(x—1), are strongly anomalous, in particular satu-
tions, the vorticityw = V2¢, whereg is the stream function, rate asymptoticallyZ,— const forp— .

v=e,XV ¢, and the temperature fluctuatiéq=T— T, Whether temperature fluctuations in thermal convection
behave as an active scalar or react only passively depends on
o +V- Vot d,6= W20, 1) the strength of the buoyancy term. This term is important at

scales |>Lgo, where Lgo=e,%[€)%(ga)¥?] is the
~ s Bolgiano-Obukhov length, see R¢lL2], ande, ande, are
9 0+Vv-VOo=xkVO+f, (2)  the dissipation rates of kinetic energy and entrop§/¢an be
considered as the entropy density of the sysf&8j). Forl
where the third term on the left in E@1) is the buoyancy <L g, the buoyancy effect is neglibile and the temperature
effect, andf is the injection rate to be specified below. The becomes a passive scalar. In Rayleigh#Bed convection
equations are given in non-dimensional form using the norpoth regimes are possible; e.g., REf4]. In homogeneous
malizationsvty/Lo—v and 8/ToLo— 6, whereLo=To/Tj  turbulent convection, howevet,gg is always smaller than
is the temperature scale lengtty=(agT,) Y2 the time the inertial scales, since, decreases rapidly witjy, hence
scale of the buoyant motiory the thermal expansion coef- 6 in Eq. (2) is always an active scalar.
ficient, g the gravitational acceleration acting inx direc- The scaling properties of the scalar field depend on those
tion, in the same direction as the mean temperature gradiemf the velocity. In thermal convection both are determined
We consider a quadratic box of linear sike=2wL,. The selfconsistently depending only weakly on the injection pro-
diffusion coefficients can be expressed in terms of the Rayeess f [15], (8v,86%)=—%€,, where Sv,=[Vv(x)—V(x
leigh number R& agT\L% vk and the Prandtl number Pr —1)]-1/l, and the balance between advection and buoyancy
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TABLE I. Main parameters of the simulation runs.

Run No. N? n m o (= k) Ra
1 4096 1 3 3x10°° 1.7x 102
2 4096 2 3 2x10°1°
3 4096 2 1 7x10 1!

terms in the momentum equatidf), vZ/l~ 86,, one ob-
tains immediately the Bolgiano-Obukho{BO) scaling
[16,17* Sv,~13%5, 56,~115.

We solve Egs.(1) and (2) numerically with periodic !
boundary conditions using a standard dealiased pseudospe\w
tral method with 409% collocation points. The main param-
eters of the simulation runs are given in Tabl€The value
of Ra is included more for curiosity, since in the case of
periodic boundary conditions the physics differs from a &
Rayleigh-Baard system with viscous boundary layghe

simulations are followed for 10-15 large-eddy turnover ===

times, which is sufficient to yield good time averages. A
coherent drivingf is chosen corresponding to a fixed back-

inverse cascade of the velocity a large-scale damping is re-
quired (similar to simulations of the inverse energy cascade
in 2D Navier-Stokes turbulenge Hence, the dissipative
terms in Egs.(1) and (2) are replaced(in k-spacé by
—(ak 2+ 1, k®) wy, and —(ak™ 2™+ k,k2") 6,, respec-
tively, where a=0(1), and wechoosem=1 or 3 andn
=1 or 2. For values ofh or m larger than one, dissipation is
concentrated more strongly at the high- or lawspectral
edge thus broadening the inertial range, but some care has
be taken because of the tendency to generate “bottleneck
humps[18] as discussed below.

Equation(1) indicates thatv is amplified at the cliffs of
thus forming vorticity sheetsinstead of vorticity gradient
sheets in 2D Navier-StokpsThese sheets suffer Kelvin-

We
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FIG. 1. Evolution of the Kelvin-Helmholtz instability in turbu-

. 5 lent convection. Temperatufgeft column and vorticity (right col-
ground temperature gradiefits v, = — dy¢.“ Because of the umn att=1.5 (a),(b) andt=3 (c),(d).

cult, to say the least. For instance, it is not clear how to relate
them to the typical spatial structures of the turbulence field.
in particular, S{P'=(|év,|Py~1%, S
=(|6v,867|P"®)~1%, which is related to the entropy flwg?
[13], andS{P)~1¢. Accurate values of the scaling exponents
can be obtained, even for only a short scaling range, if the
fields satisfy the property of extended self-similari§S9

9] and an exact relation exists to gauge the exponents. In
Navier-Stokes turbulence use of ESS and Kolmogorov's 4/5-
law for S{*) allow to determinez, with an uncertainty of less
than 1%. In the case of thermal convection no such exact
relation exists, neither fo&f) nor for S, hence the ESS

Helmholtz instablility, which controls the small-scale struc- Property, if satisfied, determines only the relative exponents.
ture of thed cliffs in the turbulence as illustrated in Fig. 1. T1here is, however, Yaglom's 4/3-law mentioned above. In

(The time development of the instability is faster than theFig. 2 the expression-(dv,567)/(5€,l), averaged ovek

dynamic distortions of the flow, such that the concept of an

instability applies. The Kelvin-Helmholtz process consti- 1.2[
tutes the main difference in the spatial behavior comparec
with a passive scalar shown, e.g., in Réfl]. 1.0

The primary objective of this letter are the scaling expo-
nents of the structure functions, which provide a rather com-, g
plete picture of the statistical properties of the turbulence.
(This approach has become customary in homogeneous two
bulence theory, though it should be mentioned that the physi-™

cal interpretation of the the set of scaling exponents is diffi-
0.4

!Bolgiano and Obukhov derived this result assuming a stablyo'2
stratified system. Its validity in the case of unstable stratificationo 0

was discussed by L'vo{a13].
2This driving generates a slight anisotropy éfn the x direction
as discussed in Reff11], in addition to a similar anisotropy of the

0.001

0.100
[/

1.000 10.000

velocity field due to the buoyancy term. However, both effects are FIG. 2. Yaglom’s |aW—<5v|50|2>/(%€9|) for run 1 (continuous
not essential for the scaling of the structure functions given belowline), run 2 (dash-dotted lineand run 3(dotted ling.
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TABLE IlI. Scaling exponentg, and relative scaling exponents 4} ‘ ]
£p1€5 andz, /23, averaged over the three runs in Table I. The third [ &S & 3
column gives the values,/&;|moq of model (3), the fifth column » :
the She-Leveque exponentp g for hydrodynamic turbulence. 3?_ .
Only even orderg are included. . ]
p fp/§3 ép/§3|mod Zp/ZS Zp,SL ép ; ;
2 0.68 0.69 0.71 0.70 0.39 2 s ]
4 1.31 1.30 1.26 1.28 0.57 r ]
6 1.92 1.88 1.73 1.78 0.66 : ]
8 2.49 2.44 2.16 221 0.72 ' E
10 3.05 2.98 2.57 2.59 0.76 F ]
12 3.58 3.52 2.96 2.94 0.79 F ]
oC L . L 7
0.01 0.10 1.00
andy, is plotted for the simulation runs in Table I. As can be t
seen, the scaling is valid over a range gf decades and the FIG. 3. dlogSP/dlogl for p=1-12 (from below for run 2.
numerical value is only slightly larger than unity. The dots in the inset are the relative exponeit&l, obtained from

We start by considering the velocity structure functionsTable Il, where the error bars are obtained from Fig. 5 of R3]
S(P). Plotted as functions @&, the S{P’ show perfect scal- for a passive scalar.
ings over the entire range of the argument validating the ESS . . 2
property. The relative exponengg/¢; are almost identical ments zcorrespondlng to a convective energy flux Suig}s S
in x andy direction and for all rungwith a scatter of 1-3% andvé*, but not for more g_eneral guantmes such @)
The valiues show that the velocity fluctuations are only/ccurate values of the relative scaling e>(<goneq,tszs are
weakly intermittent, the asymptotic increaseggfat largep ~ OPtained, which should be equalagusingS,y,~I. As seen
being only slightly slower than at smail A phenomenologi- N Table I, the_values are clqse to the She-l_-eveque expo-
cal model can be obtained in the framework of the log-"e€Ntsép,si [24] in hydrodynamic turbulence. It is, however,
Poisson schem@0,21. In Ref.[20] a general expression for difficult to _demde V\{hether thIS' agreemgnt is significant or
the relative scaling exponents,/&; is written in terms of pur(_aly_ accidental, since therg is no obvious reason why the
two parametersB, a measure of the efficiency of energy statistics of the entr0|_oy f_qu in 2D sho_uld be more closely
transfer from scale to scale8E1 in the nonintermittent related to that of tr_]e kinetic energy flux in 3D than in 2D, the
limit), andA, which is related to the codimensi@, of the ~ atter bemg( \;ery(gﬁferent as shown above. |\(‘°)t only the ESS
most intermittent scales = Co(1— 8). ChoosingA=1% and  functions S%,(S;5) but also the functionss,(l) them-
1—B=2, which are reminiscent of the BO scaling expo- Selves show rather good scaling properties at lower orders,
nents of86, and dv,, this expression becomes even without taking the absolute value in the moments; see,

for instance, Fig. 2.
4 1 2\ p3 The temperature structure functioﬁé;‘)) do not exhibit
§p/§3|mod=1—5p+§ 1—(5) : (3)  ESS property, neither when plotted as functionsSg nor
as functions ofS{3),, a behavior also found in experiments

As seen in Table Il, these values fit the simulation resul{23]- However the scaling quality of th&{f’ themselves is
well, too well it seems, in fact, to be fortuitous, though we good enough up to rather high orders 10 to yield accurate
are unable to give a simple geometric interpretation. Thevalues of the exponents,, which are given in Table Il. The
codimension isCy=3%, much smaller than in 3D Navier- S({,p) do not show a bottleneck effect, neither at large scales,
Stokes turbulence, hence the smallest structures are almd¥cause the entropy cascade is direct, nor at small scales, the
space-filling as can be seen in Figd]L logarithmic derivative of the structure functions remaining
In contrast to the relativéESS exponents, the absolute monotonic.(By contrast, the entropgpectrumé? exhibits a
values, in particularé;, are less well determined. Fan strong bottleneck effedi22], even for normal diffusiom
=3, which should yield a particularly broad inertial range, a=1.) The scaling range c$(ﬁ”) is broadest in run 2. Figure 3
bottleneck hump appears at large scales caused by the igives the logarithmic derivatives o8 for p=1-12. It
verse cascade of the kinetic energy in the presence of a rathéhould be mentioned that the instantaneous scaling expo-
abrupt transition from the inertial range to the lévdissipa-  nents vary strongly in time as also found in 3D simulations
tive. Only form=1 is this transition sufficiently gradual to of passive scalar turbulend@5], only the average over a
avoid energy accumulation in front of the dissipation region,sufficiently long period gives stationary values.
but this implies, of course, a shorter inertial range. From run A comparison with the scaling exponents for a 2D passive
3 we obtainé;=1.84, in approximate agreement with the scalar in[11] gives the interesting result that thelative
(nonintermittent BO valueé;=1.8. scaling exponents, /£, agree with those of the passive sca-
Also the mixed structure functior&"), satisfiy the ESS lar within error bars, as shown in the inset of Fig. 3. This
property.(It has been arguefP3] that ESS is valid for mo- behavior suggests that the scaling properties of a scalar do
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not depend on the details of the velocity field, but are deterthe electron canonical momentuf=¢—d2V?y follows
mined by some average properties, in our case the energyg. (2). F has the ramp-and-cliff character at scalesd,,
spectrumvﬁ. (It is, however, not clear whether the relative Wherepz_dgv%/,, but not at larger scalels>d,, where
exponents are universal. Perturbation thefdt§] indicates F~4. Comparing this behavior with that of the temperature
that the passive scalar exponents depend on the velocity caf; Boussinesq convection, where the coupling occurs
relation time, which is rela_lted to the energy spectrum. 'n_a”though the linear buoyancy term, it appears to be the ab-
case, for a 3D scalar field the relative exponents diffelgonce of o higher-order derivative of the scalar field in the

clearly from the 2D result, being less intermittg3]. A - - : : ; :
o ] . coupling term, not the linearity of the coupling, which gives
similar tendency is found when comparing 2D and 3D MHDrise to the cliffs and ramps.

turbulence[26].) Figure 3 is consistent with a saturation of In conclusion, we have studied 2D homogeneous Bouss-

{p - Also the probability density functions df6, exhibit the . . o
same character as for a passive scalar, a cusp resulting frohy > turbulence. Though Bolgiano-Obukhov scaling is ap-

the ramp-and-cliff structure and a Gaussian at large values &rommately V"?‘“d’ strong d|fferenges exist in the .|nterm|t-
the argumeni8]. tency of velocity and temperature increments. While for the

Finally, we briefly discuss the conditions for an active fOrmer intermittency is weaker than in 3D hydrodynamic
scalar to resemble a passive scalar, in particular exhibit thlrbulence, itis much stronger for the latter, similar to that of
ramp-and-cliff spatial structure. This property depends orf Passive scaldll]. The main difference in the small-scale
the character of the coupling. In the case of 2D MHD, fordynamics from a passive scalar arises through the Kelvin-
instance, the magnetic potenti@l which follows an equa- Helmholtz instability of the vorticity sheets, but this does not
tion of the form(2), is coupled to the velocity by the non- seem to affect the scaling properties. In general, an active
linear Lorentz force involving the current densWy?y. Here  scalar shows the ramp-and-cliff structures characteristic of a
the scalar field does not show a ramp-and-cliff behavior. Irpassive scalar, when the coupling term in the velocity equa-
2D EMHD, where the coupling is again the Lorentz force,tion does not contain derivatives of the scalar.
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